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Abstract
We analyze numerically the spin-dependent transport through coherent chains of three coupled
quantum dots weakly connected to external magnetic leads. In particular, using the
diagrammatic technique on the Keldysh contour, we calculate the conductance, shot noise and
tunnel magnetoresistance (TMR) in the sequential and cotunneling regimes. We show that
transport characteristics greatly depend on the strength of the interdot Coulomb correlations,
which determines the spatial distribution of the electron wavefunction in the chain. When the
correlations are relatively strong, depending on the transport regime, we find both negative
TMR as well as TMR enhanced above the Julliere value, accompanied with negative differential
conductance (NDC) and super-Poissonian shot noise. This nontrivial behavior of tunnel
magnetoresistance is associated with selection rules that govern tunneling processes and various
high-spin states of the chain that are relevant for transport. For weak interdot correlations, on
the other hand, the TMR is always positive and not larger than the Julliere TMR, although
super-Poissonian shot noise and NDC can still be observed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tunnel magnetoresistance (TMR) measures changes in
systems’ transport properties when the magnetic configuration
of the device switches from parallel to antiparallel alignment
[1]. The tunneling current is usually larger in the parallel
configuration, when transport occurs between the majority–
majority and minority–minority spin bands, than in the
antiparallel configuration, where electrons tunnel between
majority and minority spin bands, which gives rise to the
positive TMR effect. The TMR has been analyzed in various
systems, including single-electron transistors and quantum
dots [2–16]. In fact, a great deal of theoretical and
experimental investigation has been devoted to spin-polarized
transport through quantum dot structures. This is because
quantum dots coupled to ferromagnetic leads are ideal
candidates to study the fundamental interactions between spins

and charges [17–20]. Furthermore, such systems are also
being considered for applications in future spintronic devices
as well as for quantum computing [21]. However, most
of the existing theoretical considerations of spin-dependent
transport in quantum dots involved only single- and double-dot
systems [3–16], while experiments were carried out mainly
for single-dot structures [22–31]. In particular, it has been
shown [7] that the TMR in quantum dots weakly coupled to
ferromagnetic leads is generally smaller than the value given
by the Julliere model [1], TMRJull = 2p2/(1 − p2), where p
is the spin polarization of the leads, which is characteristic of
tunneling through a single tunnel junction. This result is rather
intuitive, as by embedding a quantum dot structure between
ferromagnetic electrodes, the tunneling processes through the
system become incoherent due to spin–flip processes and spin
relaxation in the dot, leading to suppressed TMR. Because
the magnitude of the TMR is generally conditioned by the
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interplay of spin-dependent tunneling, spin accumulation and
various spin states that mediate the current, one may expect
that in the case of multi-dot structures, where some high-spin
molecular states may form, the behavior of the TMR will be
modified compared to that observed in the case of single and
double dots.

To prove the above statement, in this paper we address
the problem of tunneling through chains of quantum dots, con-
sisting of three coherent dots, weakly coupled to external fer-
romagnetic leads. Very recently the transport properties of
triple quantum dots have become a subject of intensive stud-
ies due to various interesting effects that emerge in such struc-
tures [32–50]. In particular, triple dots enable the investigation
of spin-entangled currents [32], dark states [37, 41] or various
interference effects [34, 39]. Although nonmagnetic properties
of multi-dot structures have already been addressed both the-
oretically and experimentally, very little is known about their
magnetic transport properties [51]. The goal of this paper is
therefore to discuss the spin-polarized transport through coher-
ent triple quantum dots. In particular, by employing the real-
time diagrammatic technique, we calculate the current, differ-
ential conductance, TMR and shot noise in both the sequential
and cotunneling regimes. We show that transport characteris-
tics strongly depend on the strength of the interdot correlations,
which determines the spatial distribution of electron wavefunc-
tions in the chain. In the case of strong Coulomb correlations,
we find that the TMR may take values larger than the Julliere
TMR, which is associated with tunneling through high-spin
molecular states of the quantum dot system. Moreover, we also
predict negative TMR, due to an increased tunneling current in
the antiparallel configuration, associated with spin accumula-
tion in the chain. In addition, we show that these effects may
be accompanied with super-Poissonian shot noise and negative
differential conductance (NDC). On the other hand, in the case
of weak interdot Coulomb correlations, the TMR is always
positive and not larger than the Julliere TMR, while we still
observe super-Poissonian shot noise in the Coulomb blockade
regime and negative differential conductance. Although here
we consider chains consisting of only three quantum dots, simi-
lar behavior may also be observed in longer chains where trans-
port occurs through high-spin molecular states and is governed
by various selection rules.

This paper is organized as follows. In the second section
we describe the Hamiltonian of the quantum dot chain and
briefly discuss the method used in the calculations. Section 3
is devoted to numerical results, where we first analyze the
transport characteristics in the case of strong interdot Coulomb
correlations and then proceed to discuss the transport behavior
in the case of weak interdot correlations. Finally, the
conclusions are given in section 4.

2. Theoretical description

2.1. The model

The schematic of a chain consisting of three quantum dots
coupled to ferromagnetic leads is shown in figure 1. It is
assumed that the magnetizations of the leads are oriented

t
j=1 j=2 j=3

tΓL ΓR

U’ U

Figure 1. The schematic of a chain consisting of three single-level
quantum dots connected to external ferromagnetic leads. The
hopping between neighboring dots is denoted by t , U ′ and U are the
interdot and intradot Coulomb correlation energies, while �L and �R

denote the couplings to the left and right leads. The magnetizations
of the leads are assumed to form either parallel or antiparallel
magnetic configurations, as sketched in the figure.

collinearly, so that the system can be either in the parallel or
antiparallel magnetic configuration. The Hamiltonian of the
system is given by

H = Hlead + Htun + Hchain, (1)

where the first part corresponds to noninteracting itinerant
electrons in the left (r = L) and right (r = R) lead, Hlead =∑

r

∑
kσ εrkσ c†

rkσ crkσ , where εrkσ is the energy of an electron
with the wavevector k and spin σ in the lead r and c†

rkσ

(crkσ ) denotes the respective creation (annihilation) operators.
The second term of equation (1) accounts for the tunneling
processes between the leads and the quantum dot chain:

Htun =
∑

kσ

(tLc†
Lkσ d1σ + tRc†

Rkσ d3σ + h.c.), (2)

where tr denotes the tunnel matrix elements between the lead
r and the respective dot and d jσ destroys a spin-σ electron in
the dot j ( j = 1, 2, 3). Note that the first dot is coupled to the
left lead, while the third dot is connected to the right lead, see
figure 1. The strength of the coupling of the quantum dot chain
to the spin-majority (spin-minority) electron band of the r th
lead is given by �+(−)

r = 2π |tr |2ρ+(−)
r = �r (1 ± pr), where

�r = (�+
r +�−

r )/2, while ρ+(−)
r and pr are the spin-dependent

density of states for majority (minority) spin band and spin
polarization in the lead r , respectively. In the following we
assume �L = �R ≡ �/2 and pL = pR ≡ p.

Finally, the last term of the Hamiltonian describes the
chain consisting of three quantum dots which is given by

Hchain =
∑

j

∑

σ

ε j n jσ +
∑

j

U j n j↑n j↓

+ U ′∑

σσ ′
(n1σ n2σ ′ + n2σ n3σ ′)

+ t
∑

σ

(d†
1σ d2σ + d†

2σd3σ + h.c.), (3)

with n jσ = d†
jσd jσ being the particle number operator on dot

j , while ε j and U j denote the single-particle energy and on-
level Coulomb correlation in dot j , respectively. The third
part of Hchain corresponds to the interdot Coulomb interaction,
whose strength is given by U ′, while t describes the interdot
hopping. As we are interested in a rather low bias voltage
regime, it is justifiable to assume that the dot energy levels are
independent of the bias voltage. This assumption has also been
verified numerically and even if one assumes a voltage drop on
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the outer dots of the order of 10%, the current flowing through
the system becomes only very slightly modified as compared to
that in the case of zero voltage drop. Therefore, for the sake of
clarity in further discussion, we take the energy-independent
dot levels. Furthermore, we also assume that the system is
symmetric, i.e. ε j ≡ ε and U j ≡ U ( j = 1, 2, 3).

2.2. The method

In order to calculate the spin-polarized transport through a
chain of three coherent quantum dots in the sequential and
cotunneling regimes, we employ the real-time diagrammatic
technique [7, 52, 53]. It generally consists in a perturbative
expansion of the density matrix of the system and the operators
of interest (for example, the current operator) with respect
to the coupling strength �. Time evolution of the reduced
density matrix is given by a sequence of irreducible self-
energy blocks, �χχ ′ , on the Keldysh contour, corresponding
to various transition events between the many-body states |χ〉
and |χ ′〉 of the quantum dot chain. On the other hand, the
full propagation of the reduced density matrix is given by
the Dyson equation, which can be further transformed into a
general kinetic equation. In a steady state the kinetic equation
is simply given by (Σ̃P)χ = �δχχ0 and enables the calculation
of occupation probabilities Pχ for the system to be in a many-
body state |χ〉. Here, P is the probability vector, while
the matrix Σ̃ is given by the self-energy matrix Σ with one
arbitrary row χ0 replaced by (�, . . . , �) due to normalization,∑

χ Pχ = 1. The current flowing through the system can be
then found from [52]

I = − ie

2h̄
Tr{ΣIP}, (4)

where ΣI denotes the modified self-energy matrix Σ so as to
take into account the number of electrons transferred through
the system.

To calculate the transport properties order by order in
tunneling processes, we expand the self-energy matrices, Σ =
Σ(1) + Σ(2) + · · ·, ΣI = ΣI(1) + ΣI(2) + · · ·, and the
occupations, P = P(0) + P(1) + · · ·, respectively. The
self-energies in respective order can then be calculated using
the corresponding diagrammatic rules [7, 52]. The first
order of expansion corresponds to the sequential tunneling,
whereas the second one to cotunneling. In this analysis we
have calculated the self-energies up to the second order of
the perturbation series, so that we are able to resolve the
transport properties both in the sequential and cotunneling
regimes [15]. The sequential tunneling dominates transport
above a threshold voltage and is exponentially suppressed in
the Coulomb blockade regime [54]. In the blockade regime,
on the other hand, the dominant contribution to the current
comes from cotunneling processes [55], which take place
through virtual states of the system and are only algebraically
suppressed in the Coulomb blockade. As the influence of
cotunneling on transport for bias voltages above the threshold
for sequential tunneling is rather minor, the inclusion of
second-order processes is crucial for a proper description of
transport in the blockade regimes.

In addition, in the following we will also analyze the
zero-frequency current noise [56], S = ∫∞

−∞ dt (〈 Î (t) Î (0) +
Î (0) Î (t)〉 − 2〈 Î 〉2), where Î is the current operator, Î =
( ÎR − ÎL)/2, with ÎL(R) = −i(e/h̄)tL(R)

∑
kσ (c†

L(R)kσ d1(3)σ −
d†

1(3)σcL(R)kσ ) being the current flowing from the first (third)
dot to the left (right) lead. The formula for current noise
derived within the real-time diagrammatic technique can be
found in [53].

3. Numerical results

In the following we will discuss the numerical results on
the current, differential conductance, tunnel magnetoresistance
and the shot noise of a chain of three coherent single-
level quantum dots in both the linear and nonlinear response
regimes. Transport characteristics of such systems strongly
depend on the internal parameters, in particular, on the ratio
between interdot Coulomb repulsion U ′ and the hopping
between the dots t , provided that U > U ′, |t|. The ratio can be
tuned experimentally, for example, by changing the height of
the barrier between the dots [57]. When the interdot Coulomb
correlations are relatively strong, U ′/|t| > 1, the electrons
in the ground state of the chain will be mostly occupying the
outermost dots. On the other hand, for weak interdot Coulomb
interactions, U ′/|t| < 1, this tendency will not be observed.
Thus, depending on U ′/|t|, the spatial distribution of the many-
body chain states may become strongly modified. In this paper
we will therefore discuss the transport characteristics in the
two above-mentioned situations. Furthermore, we also note
that, due to many intrinsic parameters of the system, there are a
variety of transport regimes where different transport behavior
can be observed. In the following, we will thus present general
density plots: however, only the most interesting transport
features will be discussed in greater detail.

3.1. The case of strong interdot Coulomb interactions

Figure 2 shows various transport characteristics of a quantum
dot chain as a function of bias voltage V and the position of
the dots’ levels ε. Because the position of the levels can be
experimentally changed by sweeping the gate voltage, figure 2
effectively presents a bias and gate voltage dependence of
transport characteristics. The total (first plus second order)
differential conductance for the parallel (GP) and antiparallel
(GAP) magnetic configurations is shown in figures 2(a) and
(b), respectively. First of all, one can see that the differential
conductance displays a characteristic Coulomb diamond
pattern, with Coulomb blockade regimes at low transport
voltages. By lowering the position of the dots’ levels the chain
becomes consecutively occupied with electrons. In the case
considered here, the quantum dot chain can accommodate up
to six electrons, i.e. each dot can be doubly occupied. For such
values of ε when the two neighboring charge states become
degenerate, there is a peak in the linear conductance. On
the other hand, with increasing the bias voltage, out of the
Coulomb blockade regime, there are additional lines visible in
the differential conductance associated with tunneling through
excited states of the system. Furthermore, due to the contact
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a

b

c

d

e

f

Figure 2. The total (first plus second order) differential conductance in the parallel (a) and antiparallel (b) alignment, the total TMR (c), the
TMR calculated using only first-order processes (d) and the total Fano factor for parallel (e) and antiparallel (f) configurations of the system.
The figures were calculated for the case where the interdot Coulomb interaction is larger than the interdot hopping, U ′/|t | > 1. The
parameters are: U ′ = 4 meV, t = −2 meV, U = 10 meV, kBT = 0.15 meV, � = 0.1 meV and p = 0.5. The Fano factor at low bias voltages
diverges. Therefore this transport regime is marked with a white stripe in (e) and (f).

with ferromagnetic leads, the tunneling processes in the system
become spin-dependent and, consequently, transport depends
on the magnetic configuration of the system. In the parallel
configuration the majority (minority) electrons of one lead
tunnel to the majority (minority) spin band of the other lead,
whereas in the antiparallel configuration they tunnel to the
minority (majority) spin band. This is why the conductance
in the antiparallel configuration is generally suppressed as
compared to that in the parallel configuration, GP > GAP,
see figures 2(a) and (b). This difference in turn gives
rise to nonzero tunnel magnetoresistance which is plotted in
figure 2(c).

The TMR reflects the change of systems’ transport
properties when switching the magnetic configuration of the
device from a parallel to an antiparallel one. It is qualitatively
defined as [1, 2, 4] TMR = IP/IAP − 1, where IP (IAP)
is the current flowing through the system in the parallel
(antiparallel) magnetic configuration. Usually the conductance
in the parallel configuration is larger than that in the antiparallel
one, giving rise to positive TMR. In particular, for a single
ferromagnetic tunnel junction the TMR can be described by the
Julliere model [1], TMRJull = 2p2/(1 − p2) (TMRJull = 2/3
for p = 0.5 assumed in calculations). Intuitively, one may
expect that placing a quantum dot molecule between the two
leads (where tunneling processes are generally incoherent) will
decrease the TMR. This is, in fact, what is observed in most
quantum dot structures—for symmetric systems and in the
absence of magnetic field, the TMR in the weak coupling
regime is positive and not larger than TMRJull [7, 16]. In
the case of tunneling through quantum dot chains considered
here, however, we predict a nontrivial behavior of the TMR.
Depending on the transport regime, we find both the TMR

enhanced above the Julliere value as well as the negative TMR
effect, see figure 2(c). The mechanisms responsible for these
effects will be discussed in more detail in the following.

We also note that the TMR is directly related to the
ratio between the currents in the two magnetic configurations,
so that its magnitude does not necessarily depend on the
magnitude of the tunneling current. This makes the TMR a
very sensitive quantity for analyzing the transport properties
in various regimes, especially where sequential tunneling
is suppressed due to Coulomb correlations and transport
occurs mainly through higher-order tunneling processes. For
comparison, in figure 2(d) we have also plotted the TMR
calculated using only the first-order tunneling processes,
TMR(1). It can be seen that cotunneling processes modify
the TMR mainly in the blockade regimes and give rise to
strong dependence of the TMR on the occupation number
of the quantum dot chain. On the other hand, out of the
blockade regimes, the current is predominantly mediated by
sequential tunneling and one finds that TMR and TMR(1)

become comparable, although not equal.
In addition, we have also calculated the Fano factor, F =

S/Sp, in both magnetic configurations, see figures 2(e) and (f).
The Fano factor describes the deviation of the shot noise from
its Poissonian value, Sp = 2e|I |, which is characteristic of
uncorrelated tunneling. When transport is mediated only by
elastic cotunneling processes, the noise is Poissonian, F → 1.
However, once the spin–flip cotunneling is allowed the noise
can be enhanced to become super-Poissonian, F > 1, due
to bunching of inelastic processes [58]. Furthermore, in the
sequential tunneling regime, transport is mainly dominated
by Coulomb correlations which decrease the noise and the
Fano factor is generally sub-Poissonian, F < 1 [59]. This
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Table 1. The charge Q and the total spin S of three quantum dots
coupled in the series, the dimension of the respective {Q, S} blocks,
D, degeneracy of states, d , and ground state energies, EG

Q,S . The
analytical formulae for ground state energies of larger blocks are
rather lengthy; therefore here we only state which states have lower
energy for a given Q. The explicit matrices for Hamiltonian blocks
are given in the appendix.

n Q S D d Ground state energies

1 0 0 1 1 EG
0,0 = 0

2 1 1
2 3 2 EG

1, 1
2

= ε − √
2|t |

3 2 0 6 1 EG
2,0 � EG

2,1

4 2 1 3 3 EG
2,1 = 2ε + 1

2 U ′ −√
2t2 + (U ′/2)2

5 3 1
2 8 2 EG

3, 1
2

� EG
3, 3

2

6 3 3
2 1 4 EG

3, 3
2

= 3ε + 2U ′

7 4 0 6 1 EG
4,0 � EG

4,1

8 4 1 3 3 EG
4,1 = 4ε + U + 7

2 U ′ −√
2t2 + (U ′/2)2

9 5 1
2 3 2 EG

5, 1
2

= 5ε + 2U + 5U ′ − √
2t2 + U ′2

10 6 0 1 1 EG
6,0 = 6ε + 3U + 8U ′

behavior can be, in fact, observed in figures 2(e) and (f),
where in the cotunneling regime the Fano factor can take
large super-Poissonian values, while in the sequential tunneling
regime it becomes rather suppressed. It can also be seen that
the general behavior of the Fano factor in the parallel (FP)
and antiparallel (FAP) magnetic configurations is quite similar,
although the magnitude of the noise is larger in the antiparallel
configuration. On the other hand, in the low bias voltage
regime, the noise is dominated by thermal noise while the
current tends to zero, which leads to a divergency in the Fano
factor. Therefore this transport regime is marked with white
stripes in figures 2(e) and (f).

3.1.1. Linear response regime. In the linear response regime,
the transport behavior is mainly conditioned by the ground
state of the system and its evolution when changing the position
of the dot levels. The ground state energies EG

Q,S together
with respective quantum numbers of states {Q, S} are shown
in table 1, with

Q =
∑

jσ

n jσ , �S = 1
2

∑

jσσ ′
d†

jσ �σσσ ′d jσ ′, (5)

denoting the total charge and total spin of the quantum dot
chain. Because in the absence of external magnetic field the
Hamiltonian of the chain, equation (3), commutes with Q and
S2, one can solve the eigenvalue problem by diagonalizing
Hchain in respective blocks {Q, S}. Furthermore, by using
the full spin SU(2) symmetry the size of the Hilbert space
is effectively reduced from 64 to 35 multiplets, which may
be crucial for an analytical discussion of decoupled quantum
dot chains. In numerical calculations, however, we have
used the 64-state space with the following many-body states:
|χ〉 = |χ1χ2χ3〉, where χ j = 0,↑,↓, d denotes the state
with zero electrons, one spin-up, spin-down electron and two
electrons on the dot j . This is because in the case of the spin-
dependent coupling to ferromagnetic leads, the Hamiltonian

Figure 3. The linear conductance (a) in the parallel (solid line) and
antiparallel (dashed line) magnetic configurations and linear response
TMR (b) as a function of the dots’ level position ε. The parameters
are the same as in figure 2. The dotted line in (b) shows the linear
TMR calculated by using only first-order processes—sequential
TMR is constant and given by TMR(1) = p2/(1 − p2).

of the whole system possesses only the Sz symmetry. In
table 1 we show the corresponding quantum numbers, the
dimension of the Hamiltonian blocks, the degeneracy of states
and the ground state energies of the decoupled quantum dot
chain. It turns out that the ground state energies EG

Q,S for
smaller blocks can be easily calculated. However, for larger
blocks the formulae become too lengthy to be presented
here. We thus list the explicit expressions for low-dimension
Hamiltonian blocks, while for the other blocks we just state
which energy is the lowest one in the respective charge sector
Q. The explicit matrices for Hamiltonian blocks HQ,S together
with the definition of states for total charge and total spin
symmetries can be found in the appendix.

The linear conductance as well as the total TMR are
shown in figures 3(a) and (b). The linear conductance displays
characteristic resonance peaks whenever two neighboring
charge states become degenerate. The resonance energies
can be estimated from table 1 by solving min{EG

Q+1,S} −
min{EG

Q,S} = 0, where one needs to take the minimum energy
for given Q. The conductance in the parallel configuration is
larger than the conductance in the antiparallel configuration,
see figure 3(a), which results in a positive linear TMR, see
figure 3(b). For comparison we have also plotted the TMR
obtained using only first-order tunneling processes, which is
constant and given by TMR(1) = p2/(1 − p2), see the dotted
line in figure 3(b). The total TMR, on the other hand, shows
a nontrivial dependence on the position of the dots’ levels
ε. As shown in the case of single quantum dots [7, 16], the
magnitude of linear TMR is directly related to the type of
cotunneling processes that drive the current in the respective
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transport regimes. Among various cotunneling events, one
can distinguish processes that affect the magnetic state of the
quantum dot system (inelastic spin–flip processes) and the ones
that do not affect the quantum dot chain (elastic non-spin-
flip processes). In the case when each dot of the chain is
either empty or doubly occupied, only elastic processes are
possible. However, in the other cases, the spin-flip processes
also become allowed.

When the chain is empty (Q = 0) or fully occupied
(Q = 6), the TMR is maximal and equal to the Julliere
value, TMR = 2p2/(1 − p2), see figure 3(b). This is
related to the fact that in these transport regimes only the
non-spin-flip cotunneling processes are allowed and transport
is fully coherent—the cotunneling electrons are not scattered
at the chain at all. Interestingly, also for Q = 4 the TMR
becomes equal to TMRJull, which indicates that only elastic
cotunneling contributes to the linear conductance. In fact,
for Q = 4 the ground state of the chain is S = 0, see
table 1. Furthermore, for assumed parameters, i.e. in the case
of strong interdot correlations, U ′/t > 1, it turns out that in
the ground state the chain is occupied with two electrons in the
outermost dots, so that the ground state is |d0d〉. In this case
only the non-spin-flip cotunneling is allowed, which yields the
maximum TMR. However, the situation changes once the spin-
flip processes become possible, which happens in the other
transport regimes. In particular, for Q = 1, 2, 3, the linear
TMR becomes suppressed to approximately half of TMRJull

and its dependence on ε is rather complex. In these regimes the
current is mainly mediated by inelastic spin-flip cotunneling.
For Q = 5, on the other hand, the TMR becomes slightly
enhanced, although it is still lower than TMRJull. Because for
Q = 5 the ground state is a doublet |dσd〉, transport is due to
both elastic and inelastic processes—the former (latter) ones
tend to increase (decrease) the TMR, so that the magnitude
of the TMR is between the values corresponding to the Q =
1, 2, 3 and Q = 0, 4, 6 transport regimes. Finally, we also
note that at resonances the total TMR decreases to the value
approximately given by TMR(1), while as for resonant energies
the first-order processes become possible and are dominant.

3.1.2. Enhanced TMR and negative differential conductance.
The bias dependence of the current, differential conductance,
Fano factor and TMR is shown in figure 4. The transport
characteristics were calculated for ε = −7.5 meV, see also
figure 2, which corresponds to the case when at equilibrium
the quantum dot chain is in the spin doublet state, {Q =
3, S = 1

2 }, so that the ground state is doubly degenerate.
With increasing bias voltage, more and more states start
participating in transport and the current increases. However,
it can be seen that the bias dependence of the current is not
monotonic—after the first Coulomb step, the current starts to
decrease with V , leading to negative differential conductance
(NDC), which is present in both magnetic configurations, see
figure 4(b). The suppression of the current is associated with
selection rules that govern the respective sequential transitions,
i.e. only the transitions that change the total charge of the chain
by 1 and the total spin by 1

2 are allowed. When raising the
transport voltage, the following excited states {Q, S} become

Figure 4. The bias voltage dependence of the current (a), differential
conductance (b), Fano factor (c) in the parallel (solid line) and
antiparallel (dashed line) magnetic configurations and the resulting
TMR (d) for ε = −7.5 meV. The other parameters are the same as in
figure 2 and I0 denotes the maximum current given by I0 = e�/h̄.

active in transport: {2, 0} singlet and {2, 1} triplet, then {3, 1
2 }

doublet, and then {3, 3
2 } quadruplet, respectively. Although the

sequential transitions between Q = 3 doublet and Q = 2
singlet and triplet are possible, the transitions between Q = 3
doublet and Q = 3 quadruplet are prohibited as they obey
neither the charge nor the spin selection rules. In fact, once the
system gets trapped in the quadruplet state, transport becomes
suppressed, see figure 4(a) for V ≈ 5 mV, which leads to
negative differential conductance. This is because transitions
involving the {3, 3

2 } state can occur only through tunneling
from/to the triplet state {2, 1}. In the case of U/|t ′| > 1, the
two electrons in the triplet state are localized in the outermost

6
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dots, while in the quadruplet state the three electrons are
distributed uniformly between the dots. Thus, for a transition
between {3, 3

2 } and {2, 1} to occur, one needs to put or remove
an electron from the middle dot, which is however suppressed
as (t/U ′)2. On the other hand, tunneling processes in which
the state of the system changes between the Q = 3 doublet
and Q = 2 singlet are rather independent of the ratio t/U ′,
as they can occur through the outermost dots. Consequently,
transitions involving the quadruplet state are relatively slow,
while the other ones are much faster. The competition between
such slow and fast transport channels may in turn lead to large
current fluctuations [35]. This can be seen in figure 4(c), where
for voltages corresponding to the transport regime where the
current is suppressed, super-Poissonian shot noise is observed.
When increasing the bias voltage further, more excited states
become available for transport and the current starts increasing
again, see figure 4(a), while the shot noise becomes suppressed
to the sub-Poissonian value, which is typical of charge-
correlated sequential transport, see figure 4(c).

In the antiparallel configuration, on the other hand, due
to the asymmetry of tunneling processes between the left
and right leads, there is a nonequilibrium spin accumulation
in the chain. For positive bias voltages, the occupation
probability of highest-weight spin states is much increased
compared to the other components of a particular state.
This is because the spin-up electrons tunneling from the left
lead to the chain and the spin-down electrons tunneling out
of the chain to the right lead belong to the majority-spin
bands, and the positive spin component becomes accumulated
in the chain. Consequently, fewer states are available for
transport compared to the parallel configuration, so that in the
antiparallel configuration the transport channel involving the
quadruplet state {3, 3

2 } becomes even less transmitting. This
leads to several interesting features. First of all, the current is
more suppressed in the antiparallel configuration than in the
parallel one, which leads to an enhanced NDC, see figure 4(b).
On the other hand, this more effective current suppression also
reflects itself in an enhanced super-Poissonian shot noise, see
figure 4(c). Furthermore, for voltages where the current is
suppressed we observe the TMR enhanced above the Julliere
value. The TMR in this transport regime is approximately
given by TMR ≈ 3

2 TMRJull, see figure 4(d). As shown
in previous considerations, such an enhancement of TMR in
serial quantum dots weakly coupled to external leads can occur
mainly in asymmetric systems or in the presence of an external
magnetic field [15, 16]. Here, we observe TMR > TMRJull

in the absence of a magnetic field and for a fully symmetric
system. This is just a generic feature of transport through
chains of quantum dots, where due to selection rules the system
may be trapped in some high-spin states.

3.1.3. Negative TMR and super-Poissonian shot noise.
Another interesting transport behavior can be observed in
the case where the chain is in the ground state with four
electrons. The current, differential conductance, shot noise and
TMR as a function of the bias voltage for ε = −15 meV
are shown in figure 5. Due to large interdot Coulomb
correlations, U ′/|t| > 1, the ground state is non-degenerate,

Figure 5. The bias voltage dependence of the current (a), differential
conductance (b), Fano factor (c) in the parallel (solid line) and
antiparallel (dashed line) magnetic configurations and the resulting
TMR (d) for ε = −15 meV and the parameters as in figure 2.

with doubly occupied outermost dots, |d0d〉. The nearest
excited states are, respectively, doublets {3, 1

2 } and {5, 1
2 },

and triplet {4, 1}. These states are relatively close to each
other and start taking part in transport for voltages around the
threshold for sequential tunneling. At low bias voltages the
system is in the Coulomb blockade, see figures 5(a) and (b),
and transport is due to elastic cotunneling processes, which
yield the Poissonian shot noise and TMR given by the Julliere
value, see figures 5(c) and (d). The situation changes once the
transport voltage approaches the threshold, V ≈ 5 mV; then
the TMR suddenly drops and changes sign, while the shot noise
becomes strongly enhanced. This is associated with tunneling
processes that become allowed in this transport regime. First
of all, the inelastic cotunneling processes become possible

7
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for each doublet state, i.e. {3, 1
2 } and {5, 1

2 }. Furthermore,
around the threshold voltage, the sequential processes also start
participating in transport. The first-order transitions occur first
between the Q = 4 singlet and Q = 3, Q = 5 doublets. It
is worth noting that the spatial distribution of the wavefunction
is different for these two doublets. For Q = 3 the electrons
are equally distributed between the three dots, while for Q =
5 the outermost dots are fully occupied while the middle
dot is singly occupied to minimize the interdot correlations.
Consequently, the transport channel involving the state {5, 1

2 }
is slower than that involving the state {3, 1

2 }, similarly as in
the case discussed in the previous subsection. It turns out
that the interplay of various first- and second-order tunneling
processes, where particular events occur at different rates,
which exist for transport voltages around the threshold for
sequential tunneling, leads to large current fluctuations. As a
result, we observe an enhanced super-Poissonian shot noise in
both magnetic configurations of the system, see figure 5(c). On
the other hand, when the voltage increases further, sequential
processes dominate transport and the noise becomes generally
sub-Poissonian.

An interesting transport feature visible around the
threshold voltage is the negative TMR effect, see figure 5(d).
To understand this behavior, one needs to realize a very
delicate difference between probability distributions in the two
magnetic configurations. In the Coulomb blockade regime
the chain is in the singlet state |d0d〉 with probability equal
to unity, irrespective of magnetic configuration of the system.
However, once the bias voltage approaches the threshold
voltage, the occupation probability of states {3, 1

2 }, {5, 1
2 } and

{4, 1} starts slowly increasing. In addition, it turns out that
in the antiparallel configuration the probability of the highest-
weight quadruplet state is also nonzero, and it is slightly
larger than the occupation probabilities of the above-mentioned
doublets and triplet. The enhanced occupation probability
of {3, 3

2 } is purely due to nonequilibrium spin accumulation.
It is thus not present in the parallel configuration. This is,
in fact, what is crucial for the occurrence of negative TMR.
In the antiparallel configuration the current can, in addition,
flow due to cotunneling and thermally activated first-order
transitions involving the quadruplet state, which is not possible
in the parallel configuration. As a result, the current in the
antiparallel configuration becomes larger than the current in the
parallel configuration, yielding a negative TMR effect. This
can also be seen in the differential conductance where the
first peak in the antiparallel configuration occurs at slightly
lower bias voltage than in the parallel one, see figure 5(b).
With increasing the bias voltage further, the excited states start
participating in transport and the system apparently exhibits
a normal spin-valve behavior [6, 7], with the current in the
parallel configuration larger than in the antiparallel one and,
thus, with positive TMR, see figure 5(d). It is interesting to
note that the increased occupation probability of the highest-
spin component of the quadruplet state in the antiparallel
configuration was also responsible for the enhanced TMR
effect discussed in the previous subsection, whereas here it
lead to negative TMR. The negative TMR, however, occurs on
the edge of the Coulomb blockade regime, while the enhanced
TMR develops in the sequential tunneling regime.

3.2. The case of weak interdot Coulomb interaction

The differential conductance, TMR and Fano factor in the case
of U ′/|t| < 1 are shown in figure 6. For U ′/|t| < 1, the
electrons in particular states are distributed rather uniformly
over the three dots, contrary to the previous case where
electrons were localized in the outermost dots to minimize the
Coulomb correlation energy. This results in a more symmetric
behavior of transport characteristics with respect to the middle
of the Coulomb blockade regime with Q = 3, which is due
to particle–hole symmetry. Moreover, as most of the effects
observed for U ′/|t| > 1 were mainly associated with spatial
distribution of the wavefunction, one may expect their strong
dependence on the ratio U ′/|t|. This is, in fact, what can be
observed. For example, when U ′/|t| < 1, the negative TMR
and TMR enhanced above the Julliere value are not present,
although super-Poissonian shot noise and negative differential
conductance can still be found in some transport regimes. Of
course, the difference between transport characteristics in the
case of weak and strong interdot correlations reveals itself
mainly in transport regimes where the states with more than
a single electron become relevant, see figures 2 and 6.

The differential conductance in the parallel and antiparal-
lel configurations is shown in figures 6(a) and (b), respectively.
First of all, we note that, because the energy of interdot cor-
relations is now changed, the Coulomb diamond structure is
different from that shown in figure 2. The largest Coulomb di-
amond develops for Q = 3, while the size of other diamonds is
much decreased, except for empty and fully occupied chains,
see figures 6(a) and (b). The conductance in the parallel con-
figuration is larger than in the antiparallel one and the TMR is
positive in the whole range of bias voltage V and level posi-
tion ε, see figure 6(c). For comparison, the TMR calculated
using only the sequential tunneling processes is shown in fig-
ure 6(d). The main difference between the density plots for
the total TMR and TMR(1) can be seen in the Coulomb block-
ade regimes where cotunneling dominates the current. It can
be seen that the total TMR in the linear response regime dis-
plays nontrivial dependence on the occupation number of the
chain. For empty and fully occupied chains, the TMR is given
by the Julliere value and it is much suppressed in other block-
ade regimes due to spin–flip cotunneling processes.

In the nonlinear response regime when at equilibrium the
chain was in the charge state Q = 3, it is reminiscent of effects
found in the case of U ′/|t| > 1, see figure 4. Now, one
can also observe an enhanced TMR, although its magnitude
is slightly lower than the Julliere TMR. This enhanced TMR is
accompanied by negative differential conductance and super-
Poissonian shot noise, which are more visible in the antiparallel
configuration. The mechanism leading to these effects is
similar to that discussed in the previous subsection and is
mainly associated with a transport channel involving the
quadruplet state and spin accumulation in the antiparallel
configuration.

Furthermore, in the nonlinear response regime of the
Coulomb blockade regime with Q = 2, the TMR becomes
suppressed, being very close to zero. In this transport regime
the chain at equilibrium is in the singlet state {2, 0} and
the excited states are consecutively {2, 1} and {1, 1

2 }. On
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a

b

c

d

e

f

Figure 6. The total differential conductance in the parallel (a) and antiparallel (b) alignment, the total TMR (c), the TMR calculated using
only first-order processes (d) and the total Fano factor for parallel (e) and antiparallel (f) configuration of the system for the case when the
interdot Coulomb interaction is smaller than the interdot hopping, U ′/|t | < 1. The parameters are: U ′ = 0.5 meV, t = −2 meV,
U = 10 meV, kBT = 0.15 meV, � = 0.1 meV and p = 0.5. The Fano factor at low bias voltage diverges, therefore this transport regime is
marked with a white stripe in (e) and (f).

increasing the bias voltage, the occupation probability of
excited states starts increasing. It turns out that in the parallel
configuration all the components of the Q = 1 doublet
and Q = 2 triplet are relevant, while in the antiparallel
configuration, due to spin accumulation, only the highest-
weight components are relevant, however with slightly larger
occupation probabilities. This leads to an increased current
in the antiparallel configuration, so that the currents in the
two configurations become roughly comparable, yielding very
small TMR. In addition, on raising the bias voltage the
shot noise becomes enhanced and reaches a maximum for
voltages around the threshold for sequential tunneling, which
is associated with bunching of inelastic cotunneling processes.
Similar behavior can also be observed for the Coulomb
blockade regime with four electrons in the chain, which is due
to particle–hole symmetry. It is also interesting to note that the
behavior of transport characteristics in the cotunneling regime
with Q = 2 is very weakly affected by the ratio U ′/|t|, see
figures 2 and 6. However, for Coulomb blockade regimes with
more electrons in the ground state, transport properties become
completely modified due to different spatial distribution of
wavefunctions: compare, for example, the Coulomb blockade
regime with Q = 4 in figures 2 and 6.

Finally, we also note that in the case of weak interdot
correlations the shot noise is rather sub-Poissonian in the whole
sequential tunneling regime, irrespective of the magnetic
configuration of the system. On the other hand, the super-
Poissonian shot noise is only found in the Coulomb blockade
regimes where the chain is the charge state with two, three
or four electrons, which is due to bunching of inelastic
cotunneling processes.

4. Conclusions

We have analyzed the linear and nonlinear transport properties
in chains of quantum dots consisting of three coherent single-
level quantum dots weakly coupled to external ferromagnetic
leads. By employing the real-time diagrammatic technique,
we have calculated the current, differential conductance, shot
noise and tunnel magnetoresistance in the case of strong
(U ′/|t| > 1) and weak (U ′/|t| < 1) interdot correlations. By
changing the ratio U ′/|t|, one can effectively change the spatial
distribution of electron wavefunctions of the chain. When
U ′/|t| > 1, the electrons tend to be localized in the outermost
dots, while for U ′/|t| < 1 the electrons are distributed rather
uniformly over the dots.

In particular, in the case of large interdot correlations we
have shown that the TMR strongly depends on the transport
regime and can take negative values as well as values exceeding
the TMR given by the Julliere model. The enhanced TMR
occurs in the nonlinear response regime when the chain is
occupied by three electrons at equilibrium and is associated
with a suppressed current in the antiparallel configuration due
to trapping of the quantum dot chain in some high-spin states.
In addition, the suppression of the current gives rise to negative
differential conductance and super-Poissonian shot noise. We
have also shown that the TMR may change sign and become
negative. This happens in the cotunneling regime with four
electrons in the chain when the bias voltage approaches the
threshold voltage for sequential tunneling. The negative TMR
is then associated with increased tunneling through the highest-
weight spin state (quadruplet) of the chain. Furthermore,
we have also shown that negative TMR is accompanied with
large super-Poissonian shot noise due to the interplay between
various inelastic cotunneling and sequential processes that start
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contributing to the current around the threshold voltage. On
the other hand, when the interdot correlations are weak, most
of the effects found in the case of U ′/|t| > 1 become smeared
out. In particular, the negative TMR and TMR enhanced above
the Julliere value are not present, although super-Poissonian
shot noise and the negative differential conductance can still
be observed.

Finally, we note that, although the results presented here
were calculated for chains of three quantum dots, similar
behavior may be in principle observed for longer chains, where
transport is governed by various selection rules and the current
can flow due to tunneling through high-spin molecular states
of the system.
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Appendix

The localized basis of quantum dot chain states is defined as
|χ〉 = |χ1χ2χ3〉, where χ j = 0,↑,↓, d denotes zero electrons,
one spin-up, spin-down electron and doubly occupied dot j .
Using the SU(2) symmetry for total spin one can reduce the
Hilbert space from 43 states to 35 multiplets. The reduction
of Hilbert space is important rather for analytical calculations,
while in numerical calculations we have used the basis of 64
states. In the following, we give the explicit matrices for blocks
of the Hamiltonian Hchain in the basis of total charge Q and
total spin S, where to define the spin SU(2) basis we have
taken the highest-weight spin states. In the block {Q = 2, S =
0}, the states are: S2,0

1 = |d00〉, S2,0
2 = |0d0〉, S2,0

3 = |00d〉,
S2,0

12 = 1√
2
(|↑↓0〉 − |↓↑0〉), S2,0

23 = 1√
2
(|0↑↓〉 − |0↓↑〉) and

S2,0
13 = 1√

2
(|↑0↓〉 − |↓0↑〉), respectively. The Hamiltonian

block in this basis is given by

H2,0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ε21 0 0
√

2t 0 0
0 ε21 0

√
2t

√
2t 0

0 0 ε21 0
√

2t 0√
2t

√
2t 0 ε22 0 t

0
√

2t
√

2t 0 ε22 t
0 0 0 t t ε23

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (A.1)

where ε21 = 2ε + U , ε22 = 2ε + U ′ and ε23 = 2ε. The block
of Hchain for {Q = 4, S = 0}, H4,0, has a similar structure to
H2,0 due to particle–hole symmetry:

H4,0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ε41 0 0
√

2t 0 0
0 ε41 − 4U ′ 0

√
2t

√
2t 0

0 0 ε41 0
√

2t 0√
2t

√
2t 0 ε42 0 −t

0
√

2t
√

2t 0 ε42 −t
0 0 0 −t −t ε43

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(A.2)

where ε41 = 4ε + 2U + 4U ′, ε42 = 4ε + U + 3U ′ and
ε43 = 4ε + U + 4U ′. The states in block {Q = 4, S = 0} are
explicitly given by: S4,0

1 = |0dd〉, S4,0
2 = |d0d〉, S4,0

3 = |dd0〉,
S4,0

12 = 1√
2
(|↑↓d〉 − |↓↑d〉), S4,0

23 = 1√
2
(|d↑↓〉 − |d↓↑〉)

and S4,0
13 = 1√

2
(|↑d↓〉 − |↓d↑〉), respectively. On the other

hand, the Hamiltonian block for {Q = 3, S = 1
2 } is the

largest one, with the states defined as follows: D
3, 1

2
1 = |d↑0〉,

D
3, 1

2
2 = |0↑d〉, D

3, 1
2

3 = |↑d0〉, D
3, 1

2
4 = |0d↑〉, D

3, 1
2

5 = |↑0d〉,
D

3, 1
2

6 = |d0↑〉, D
3, 1

2
7 = 1√

2
(|↑↓↑〉 − |↓↑↑〉) and D

3, 1
2

8 =
√

2
3 |↑↑↓〉− 1√

6
(|↑↓↑〉+|↓↑↑〉), respectively. The block H3, 1

2

is explicitly given by

H3, 1
2

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε31 0 −t 0 0 t 0 0
0 ε31 0 −t t 0 0 0

−t 0 ε31 0 0 0 −t√
2

√
3
2 t

0 −t 0 ε31 0 0
√

2t 0

0 t 0 0 ε32 0 −t√
2

√
3
2 t

t 0 0 0 0 ε32

√
2t 0

0 0 −t√
2

√
2t −t√

2

√
2t ε33 0

0 0
√

3
2 t 0

√
3
2 t 0 0 ε33

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(A.3)

where ε31 = 3ε+U +2U ′, ε32 = 3ε+U and ε33 = 3ε+2U ′.
For completeness, we also give the matrices for smaller blocks
of the Hamiltonian:

H1, 1
2

=
(

ε t 0
t ε t
0 t ε

)

, (A.4)

H2,1 =
( 2ε + U ′ t 0

t 2ε t
0 t 2ε + U ′

)

. (A.5)

The states for block {Q = 1, S = 1
2 } are: D

1, 1
2

1 = |↑00〉,
D

1, 1
2

2 = |0↑0〉 and D
1, 1

2
3 = |00↑〉, while for block {Q =

2, S = 1} they are given by: T 1,1
1 = |↑↑0〉, T 1,1

2 = |↑0↑〉
and T 1,1

3 = |0↑↑〉, respectively. The Hamiltonian blocks H5, 1
2

and H4,1 have similar structure to blocks H1, 1
2

and H2,1 due to
particle–hole symmetry. On the other hand, blocks H0,0, H3, 3

2

and H6,0 are trivially one-dimensional, see also table 1.
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[44] Schröer D, Greentree A D, Gaudreau L, Eberl K,
Hollenberg L C L, Kotthaus J P and Ludwig S 2007 Phys.
Rev. B 76 075306

[45] Chen Yu and Goldman A M 2007 Appl. Phys. Lett. 91 063119
[46] Grove-Rasmussen K, Jørgensen H I, Hayashi T,

Lindelof P E and Fujisawa T 2008 arXiv:0804.3441v1
[47] Rogge M C and Haug R J 2008 Phys. Rev. B 77 193306
[48] Peres N M R, Stauber T and Lopes dos Santos J M B 2009

Phys. Rev. B 79 035107
[49] Kim J, Melnikov D V and Leburton J-P 2009 Phys. Rev. B

80 045305
[50] Gaudreau L, Sachrajda A S, Studenikin S, Kam A, Delgado F,

Shim Y P, Korkusinski M and Hawrylak P 2009 Phys. Rev.
B 80 075415
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